Quantification of tumor microenvironment acidity in glioblastoma using principal component analysis of dynamic susceptibility contrast enhanced MR imaging
Abstract Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to esti...
Guardado en:
Autores principales: | Hamed Akbari, Anahita Fathi Kazerooni, Jeffrey B. Ware, Elizabeth Mamourian, Hannah Anderson, Samantha Guiry, Chiharu Sako, Catalina Raymond, Jingwen Yao, Steven Brem, Donald M. O’Rourke, Arati S. Desai, Stephen J. Bagley, Benjamin M. Ellingson, Christos Davatzikos, Ali Nabavizadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3997d4247b045488e4da9cb506d56e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Teaching journalism in Oman: Reflections after the Arab Spring
por: Susan O'Rourke
Publicado: (2011) -
French in Mexico--Mr.Seward to Mr. Adams
Publicado: (2017) -
French in Mexico--Mr. Seward to Mr. Motley
Publicado: (2017) -
Tutoring Large Numbers: An Unmet Challenge
por: Helen Lentell, et al.
Publicado: (2004) -
Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40
por: Fan Yang, et al.
Publicado: (2021)