Reliable Identification of Oolong Tea Species: Nondestructive Testing Classification Based on Fluorescence Hyperspectral Technology and Machine Learning
A rapid and nondestructive tea classification method is of great significance in today’s research. This study uses fluorescence hyperspectral technology and machine learning to distinguish Oolong tea by analyzing the spectral features of tea in the wavelength ranging from 475 to 1100 nm. The spectra...
Guardado en:
Autores principales: | Yan Hu, Lijia Xu, Peng Huang, Xiong Luo, Peng Wang, Zhiliang Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f3afd197b3434d08a8778380b1c1110e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Detection and Classification of Rice Infestation with Rice Leaf Folder (<i>Cnaphalocrocis medinalis</i>) Using Hyperspectral Imaging Techniques
por: Gui-Chou Liang, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
A Novel 2D-3D CNN with Spectral-Spatial Multi-Scale Feature Fusion for Hyperspectral Image Classification
por: Dongxu Liu, et al.
Publicado: (2021)