Brain Strategy Algorithm for Multiple Object Tracking Based on Merging Semantic Attributes and Appearance Features
The human brain can effortlessly perform vision processes using the visual system, which helps solve multi-object tracking (MOT) problems. However, few algorithms simulate human strategies for solving MOT. Therefore, devising a method that simulates human activity in vision has become a good choice...
Enregistré dans:
Auteurs principaux: | Mai S. Diab, Mostafa A. Elhosseini, Mohamed S. El-Sayed, Hesham A. Ali |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f3be6e88b9564e13819d62308b79885c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
par: Soyeong Kim, et autres
Publié: (2021) -
Development of Real-Time Control System based on Deep Learning for UAVs Object Detection, Tracking and Safe-Landing
par: Mohamed Rabah, et autres
Publié: (2021) -
Research on Real-Time Tracking Algorithm for Multi-Objects of Shipboard Aircraft Based on Detection
par: Tian Shaobing, Zhu Xingdong, Fan Jiali, Wang Zheng
Publié: (2021) -
The Free Association Task: Proposal of a Clinical Tool for Detecting Differential Profiles of Semantic Impairment in Semantic Dementia and Alzheimer’s Disease
par: Gian Daniele Zannino, et autres
Publié: (2021) -
Efficient Online Tracking-by-Detection With Kalman Filter
par: Siyuan Chen, et autres
Publié: (2021)