An Effective Clustering Algorithm Using Adaptive Neighborhood and Border Peeling Method
Traditional clustering methods often cannot avoid the problem of selecting neighborhood parameters and the number of clusters, and the optimal selection of these parameters varies among different shapes of data, which requires prior knowledge. To address the above parameter selection problem, we pro...
Enregistré dans:
Auteurs principaux: | Ji Feng, Bokai Zhang, Ruisheng Ran, Wanli Zhang, Degang Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f3c3e7aa0712468ca13c2a8aa79add12 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pairwise Biological Network Alignment Based on Discrete Bat Algorithm
par: Jing Chen, et autres
Publié: (2021) -
Intelligent Diagnosis of Cervical Cancer Based on Data Mining Algorithm
par: Lei Zhang, et autres
Publié: (2021) -
Diagnostic Classification of Patients with Dilated Cardiomyopathy Using Ventricular Strain Analysis Algorithm
par: Mingliang Li, et autres
Publié: (2021) -
Audit Data Analysis and Application Based on Correlation Analysis Algorithm
par: Jifan Chen, et autres
Publié: (2021) -
Keratoconus Severity Classification Using Features Selection and Machine Learning Algorithms
par: Mustapha Aatila, et autres
Publié: (2021)