State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis

Development of algorithms to predict reactant and reagents given a target molecule is key to accelerate retrosynthesis approaches. Here the authors demonstrate that applying augmentation techniques to the SMILE representation of target data significantly improves the quality of the reaction predicti...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Igor V. Tetko, Pavel Karpov, Ruud Van Deursen, Guillaume Godin
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
Q
Accès en ligne:https://doaj.org/article/f3db04ada827413392a0875994a0169d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!