Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids

Abstract Reliable and accurate prediction of complex fluids’ response under flow is of great interest across many disciplines, from biological systems to virtually all soft materials. The challenge is to solve non-trivial time and rate dependent constitutive equations to describe these structured fl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammadamin Mahmoudabadbozchelou, Safa Jamali
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f40858f843874b4290fb48c970ebab93
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!