Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids
Abstract Reliable and accurate prediction of complex fluids’ response under flow is of great interest across many disciplines, from biological systems to virtually all soft materials. The challenge is to solve non-trivial time and rate dependent constitutive equations to describe these structured fl...
Guardado en:
Autores principales: | Mohammadamin Mahmoudabadbozchelou, Safa Jamali |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f40858f843874b4290fb48c970ebab93 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Life and death of colloidal bonds control the rate-dependent rheology of gels
por: Mohammad Nabizadeh, et al.
Publicado: (2021) -
Nanoscale rheology at solid-complex fluid interfaces
por: Sebastian Jaksch, et al.
Publicado: (2017) -
Metamodeling of the Energy Consumption of Buildings with Daylight Harvesting – Application of Artificial Neural Networks Sensitive to Orientation
por: Raphaela Walger da Fonseca, et al.
Publicado: (2021) -
Determination of rheological properties of bio-asphalt binders through experimental and multilayer feed-forward neural network methods
por: Abdulnaser M Al-Sabaeei, et al.
Publicado: (2021) - The Innes review