Quantum approximate optimization for hard problems in linear algebra
The quantum approximate optimization algorithm (QAOA) by Farhi et al. is a quantum computational framework for solving quantum or classical optimization tasks. Here, we explore using QAOA for binary linear least squares (BLLS); a problem that can serve as a building block of several other hard probl...
Guardado en:
Autor principal: | Ajinkya Borle, Vincent E. Elfving, Samuel J. Lomonaco |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SciPost
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f4cd35313c20476585a2eeafa2ddea53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices
por: Leo Zhou, et al.
Publicado: (2020) -
Continuous Symmetries and Approximate Quantum Error Correction
por: Philippe Faist, et al.
Publicado: (2020) -
Classical variational simulation of the Quantum Approximate Optimization Algorithm
por: Matija Medvidović, et al.
Publicado: (2021) -
Entropy Scaling Law and the Quantum Marginal Problem
por: Isaac H. Kim
Publicado: (2021) -
An algebraic classification of solution generating techniques
por: Riccardo Borsato, et al.
Publicado: (2021)