Quantum approximate optimization for hard problems in linear algebra
The quantum approximate optimization algorithm (QAOA) by Farhi et al. is a quantum computational framework for solving quantum or classical optimization tasks. Here, we explore using QAOA for binary linear least squares (BLLS); a problem that can serve as a building block of several other hard probl...
Enregistré dans:
Auteur principal: | Ajinkya Borle, Vincent E. Elfving, Samuel J. Lomonaco |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SciPost
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f4cd35313c20476585a2eeafa2ddea53 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices
par: Leo Zhou, et autres
Publié: (2020) -
Continuous Symmetries and Approximate Quantum Error Correction
par: Philippe Faist, et autres
Publié: (2020) -
Classical variational simulation of the Quantum Approximate Optimization Algorithm
par: Matija Medvidović, et autres
Publié: (2021) -
Entropy Scaling Law and the Quantum Marginal Problem
par: Isaac H. Kim
Publié: (2021) -
An algebraic classification of solution generating techniques
par: Riccardo Borsato, et autres
Publié: (2021)