Statistical Enrichment Analysis of Samples: A General-Purpose Tool to Annotate Metadata Neighborhoods of Biological Samples
Unsupervised learning techniques, such as clustering and embedding, have been increasingly popular to cluster biomedical samples from high-dimensional biomedical data. Extracting clinical data or sample meta-data shared in common among biomedical samples of a given biological condition remains a maj...
Saved in:
Main Authors: | Thanh M. Nguyen, Samuel Bharti, Zongliang Yue, Christopher D. Willey, Jake Y. Chen |
---|---|
Format: | article |
Language: | EN |
Published: |
Frontiers Media S.A.
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/f51a8838d56f47ff861e6f335e441693 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Corrigendum: Statistical Enrichment Analysis of Samples: A General-Purpose Tool to Annotate Metadata Neighborhoods of Biological Samples
by: Thanh M. Nguyen, et al.
Published: (2021) -
Dual Inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems
by: Enyuan Shang, et al.
Published: (2018) -
A novel PDX modeling strategy and its application in metabolomics study for malignant pleural mesothelioma
by: Zhongjian Chen, et al.
Published: (2021) -
Therapeutic Effects of Dietary Soybean Genistein on Triple-Negative Breast Cancer via Regulation of Epigenetic Mechanisms
by: Manvi Sharma, et al.
Published: (2021) -
Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential
by: Yu Y, et al.
Published: (2017)