Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
Subclonal deconvolution in cancer sequencing data is a complex task, and the optimal tools to use are unclear. Here, the authors systematically benchmark subclonal deconvolution pipelines with a comprehensive set of simulated tumour genomes and identify the best-performing methods.
Enregistré dans:
| Auteurs principaux: | Georgette Tanner, David R. Westhead, Alastair Droop, Lucy F. Stead |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/f5475b13ac43401197d2270caf88aa9a |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Benchmarking of cell type deconvolution pipelines for transcriptomics data
par: Francisco Avila Cobos, et autres
Publié: (2020) -
Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data
par: Salem Malikic, et autres
Publié: (2019) -
Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data
par: Francisco Avila Cobos, et autres
Publié: (2020) -
Quantifying the influence of mutation detection on tumour subclonal reconstruction
par: Lydia Y. Liu, et autres
Publié: (2020) -
FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples
par: Yao Xiao, et autres
Publié: (2020)