Machine Learning Based Prediction of Squamous Cell Carcinoma in Ex Vivo Confocal Laser Scanning Microscopy
Image classification with convolutional neural networks (CNN) offers an unprecedented opportunity to medical imaging. Regulatory agencies in the USA and Europe have already cleared numerous deep learning/machine learning based medical devices and algorithms. While the field of radiology is on the fo...
Enregistré dans:
Auteurs principaux: | Cristel Ruini, Sophia Schlingmann, Žan Jonke, Pinar Avci, Víctor Padrón-Laso, Florian Neumeier, Istvan Koveshazi, Ikenna U. Ikeliani, Kathrin Patzer, Elena Kunrad, Benjamin Kendziora, Elke Sattler, Lars E. French, Daniela Hartmann |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f55b4b793c9c407f97c8de4c2c434cba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
par: Veronika Shavlokhova, et autres
Publié: (2021) -
Ex vivo confocal microscopy: an emerging technique in dermatology
par: Elisa Cinotti, et autres
Publié: (2018) -
The use of reflectance confocal microscopy for monitoring response to therapy of skin malignancies
par: Marina Ulrich, et autres
Publié: (2012) -
Recognizing the benefits and pitfalls of reflectance confocal microscopy in melanoma diagnosis
par: Alon Scope, et autres
Publié: (2014) -
Reflectance confocal microscopy of mammary Paget disease
par: Fezal Ozdemir, et autres
Publié: (2017)