Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase

Summary 5‐Ketofructose (5‐KF) is a promising low‐calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane‐bound three‐subunit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Karen Wohlers, Astrid Wirtz, Alexander Reiter, Marco Oldiges, Meike Baumgart, Michael Bott
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/f5932547fafc451fae90268e7c39a795
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f5932547fafc451fae90268e7c39a795
record_format dspace
spelling oai:doaj.org-article:f5932547fafc451fae90268e7c39a7952021-11-18T15:39:53ZMetabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase1751-791510.1111/1751-7915.13913https://doaj.org/article/f5932547fafc451fae90268e7c39a7952021-11-01T00:00:00Zhttps://doi.org/10.1111/1751-7915.13913https://doaj.org/toc/1751-7915Summary 5‐Ketofructose (5‐KF) is a promising low‐calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane‐bound three‐subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5‐KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5‐KF. In a batch fermentation, 129 g l−1 5‐KF were formed from 150 g l−1 fructose within 23 h, corresponding to a space‐time yield of 5.6 g l−1 h−1. Besides fructose, also sucrose could be used as substrate for 5‐KF production by plasmid‐based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5‐KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5‐KF production.Karen WohlersAstrid WirtzAlexander ReiterMarco OldigesMeike BaumgartMichael BottWileyarticleBiotechnologyTP248.13-248.65ENMicrobial Biotechnology, Vol 14, Iss 6, Pp 2592-2604 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biotechnology
TP248.13-248.65
spellingShingle Biotechnology
TP248.13-248.65
Karen Wohlers
Astrid Wirtz
Alexander Reiter
Marco Oldiges
Meike Baumgart
Michael Bott
Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
description Summary 5‐Ketofructose (5‐KF) is a promising low‐calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane‐bound three‐subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5‐KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5‐KF. In a batch fermentation, 129 g l−1 5‐KF were formed from 150 g l−1 fructose within 23 h, corresponding to a space‐time yield of 5.6 g l−1 h−1. Besides fructose, also sucrose could be used as substrate for 5‐KF production by plasmid‐based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5‐KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5‐KF production.
format article
author Karen Wohlers
Astrid Wirtz
Alexander Reiter
Marco Oldiges
Meike Baumgart
Michael Bott
author_facet Karen Wohlers
Astrid Wirtz
Alexander Reiter
Marco Oldiges
Meike Baumgart
Michael Bott
author_sort Karen Wohlers
title Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
title_short Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
title_full Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
title_fullStr Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
title_full_unstemmed Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
title_sort metabolic engineering of pseudomonas putida for production of the natural sweetener 5‐ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase
publisher Wiley
publishDate 2021
url https://doaj.org/article/f5932547fafc451fae90268e7c39a795
work_keys_str_mv AT karenwohlers metabolicengineeringofpseudomonasputidaforproductionofthenaturalsweetener5ketofructosefromfructoseorsucrosebyperiplasmicoxidationwithaheterologousfructosedehydrogenase
AT astridwirtz metabolicengineeringofpseudomonasputidaforproductionofthenaturalsweetener5ketofructosefromfructoseorsucrosebyperiplasmicoxidationwithaheterologousfructosedehydrogenase
AT alexanderreiter metabolicengineeringofpseudomonasputidaforproductionofthenaturalsweetener5ketofructosefromfructoseorsucrosebyperiplasmicoxidationwithaheterologousfructosedehydrogenase
AT marcooldiges metabolicengineeringofpseudomonasputidaforproductionofthenaturalsweetener5ketofructosefromfructoseorsucrosebyperiplasmicoxidationwithaheterologousfructosedehydrogenase
AT meikebaumgart metabolicengineeringofpseudomonasputidaforproductionofthenaturalsweetener5ketofructosefromfructoseorsucrosebyperiplasmicoxidationwithaheterologousfructosedehydrogenase
AT michaelbott metabolicengineeringofpseudomonasputidaforproductionofthenaturalsweetener5ketofructosefromfructoseorsucrosebyperiplasmicoxidationwithaheterologousfructosedehydrogenase
_version_ 1718420821165211648