High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma.
Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f59d566d9d2d4a60a0109f1d98d39a5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f59d566d9d2d4a60a0109f1d98d39a5c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f59d566d9d2d4a60a0109f1d98d39a5c2021-11-18T07:56:24ZHigh-throughput screening for growth inhibitors using a yeast model of familial paraganglioma.1932-620310.1371/journal.pone.0056827https://doaj.org/article/f59d566d9d2d4a60a0109f1d98d39a5c2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23451094/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic acid (TCA) cycle of central metabolism. Loss of SDH initiates PGL through mechanisms that remain unclear. Could this metabolic defect provide a novel opportunity for chemotherapy of PGL? We report the results of high throughput screening to identify compounds differentially toxic to SDH mutant cells using a powerful S. cerevisiae (yeast) model of PGL. Screening more than 200,000 compounds identifies 12 compounds that are differentially toxic to SDH-mutant yeast. Interestingly, two of the agents, dequalinium and tetraethylthiuram disulfide (disulfiram), are anti-malarials with the latter reported to be a glycolysis inhibitor. We show that four of the additional hits are potent inhibitors of yeast alcohol dehydrogenase. Because alcohol dehydrogenase regenerates NAD(+) in glycolytic cells that lack TCA cycle function, this result raises the possibility that lactate dehydrogenase, which plays the equivalent role in human cells, might be a target of interest for PGL therapy. We confirm that human cells deficient in SDH are differentially sensitive to a lactate dehydrogenase inhibitor.Irina BancosJohn Paul BidaDefeng TianMary BundrickKristen JohnMolly Nelson HolteYeng F HerDebra EvansDyana T SaenzEric M PoeschlaDerek HookGunda GeorgL James MaherPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 2, p e56827 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Irina Bancos John Paul Bida Defeng Tian Mary Bundrick Kristen John Molly Nelson Holte Yeng F Her Debra Evans Dyana T Saenz Eric M Poeschla Derek Hook Gunda Georg L James Maher High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
description |
Classical tumor suppressor genes block neoplasia by regulating cell growth and death. A remarkable puzzle is therefore presented by familial paraganglioma (PGL), a neuroendocrine cancer where the tumor suppressor genes encode subunits of succinate dehydrogenase (SDH), an enzyme of the tricarboxylic acid (TCA) cycle of central metabolism. Loss of SDH initiates PGL through mechanisms that remain unclear. Could this metabolic defect provide a novel opportunity for chemotherapy of PGL? We report the results of high throughput screening to identify compounds differentially toxic to SDH mutant cells using a powerful S. cerevisiae (yeast) model of PGL. Screening more than 200,000 compounds identifies 12 compounds that are differentially toxic to SDH-mutant yeast. Interestingly, two of the agents, dequalinium and tetraethylthiuram disulfide (disulfiram), are anti-malarials with the latter reported to be a glycolysis inhibitor. We show that four of the additional hits are potent inhibitors of yeast alcohol dehydrogenase. Because alcohol dehydrogenase regenerates NAD(+) in glycolytic cells that lack TCA cycle function, this result raises the possibility that lactate dehydrogenase, which plays the equivalent role in human cells, might be a target of interest for PGL therapy. We confirm that human cells deficient in SDH are differentially sensitive to a lactate dehydrogenase inhibitor. |
format |
article |
author |
Irina Bancos John Paul Bida Defeng Tian Mary Bundrick Kristen John Molly Nelson Holte Yeng F Her Debra Evans Dyana T Saenz Eric M Poeschla Derek Hook Gunda Georg L James Maher |
author_facet |
Irina Bancos John Paul Bida Defeng Tian Mary Bundrick Kristen John Molly Nelson Holte Yeng F Her Debra Evans Dyana T Saenz Eric M Poeschla Derek Hook Gunda Georg L James Maher |
author_sort |
Irina Bancos |
title |
High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
title_short |
High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
title_full |
High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
title_fullStr |
High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
title_full_unstemmed |
High-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
title_sort |
high-throughput screening for growth inhibitors using a yeast model of familial paraganglioma. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/f59d566d9d2d4a60a0109f1d98d39a5c |
work_keys_str_mv |
AT irinabancos highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT johnpaulbida highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT defengtian highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT marybundrick highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT kristenjohn highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT mollynelsonholte highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT yengfher highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT debraevans highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT dyanatsaenz highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT ericmpoeschla highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT derekhook highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT gundageorg highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma AT ljamesmaher highthroughputscreeningforgrowthinhibitorsusingayeastmodeloffamilialparaganglioma |
_version_ |
1718422767714435072 |