Discovering differential genome sequence activity with interpretable and efficient deep learning.
Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpr...
Guardado en:
Autores principales: | Jennifer Hammelman, David K Gifford |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f68a75bb216e4deea942b65eba7350a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation
por: Basab Roy, et al.
Publicado: (2020) -
GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
por: Arno van Hilten, et al.
Publicado: (2021) -
Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants.
por: Nadin Rohland, et al.
Publicado: (2010) -
Deep learning allows genome-scale prediction of Michaelis constants from structural features.
por: Alexander Kroll, et al.
Publicado: (2021) -
Universal count correction for high-throughput sequencing.
por: Tatsunori B Hashimoto, et al.
Publicado: (2014)