Discovering differential genome sequence activity with interpretable and efficient deep learning.
Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpr...
Enregistré dans:
Auteurs principaux: | Jennifer Hammelman, David K Gifford |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f68a75bb216e4deea942b65eba7350a7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation
par: Basab Roy, et autres
Publié: (2020) -
GenNet framework: interpretable deep learning for predicting phenotypes from genetic data
par: Arno van Hilten, et autres
Publié: (2021) -
Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants.
par: Nadin Rohland, et autres
Publié: (2010) -
Deep learning allows genome-scale prediction of Michaelis constants from structural features.
par: Alexander Kroll, et autres
Publié: (2021) -
Universal count correction for high-throughput sequencing.
par: Tatsunori B Hashimoto, et autres
Publié: (2014)