To address surface reaction network complexity using scaling relations machine learning and DFT calculations

Finding catalyst mechanisms remains a challenge due to the complexity of hydrocarbon chemistry. Here, the authors shows that scaling relations and machine-learning methods can focus full-accuracy methods on the small subset of rate-limiting reactions allowing larger reaction networks to be treated.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Zachary W. Ulissi, Andrew J. Medford, Thomas Bligaard, Jens K. Nørskov
Format: article
Langue:EN
Publié: Nature Portfolio 2017
Sujets:
Q
Accès en ligne:https://doaj.org/article/f70daa3691ba4e61869251a1b60cfe88
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!