To address surface reaction network complexity using scaling relations machine learning and DFT calculations
Finding catalyst mechanisms remains a challenge due to the complexity of hydrocarbon chemistry. Here, the authors shows that scaling relations and machine-learning methods can focus full-accuracy methods on the small subset of rate-limiting reactions allowing larger reaction networks to be treated.
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f70daa3691ba4e61869251a1b60cfe88 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Finding catalyst mechanisms remains a challenge due to the complexity of hydrocarbon chemistry. Here, the authors shows that scaling relations and machine-learning methods can focus full-accuracy methods on the small subset of rate-limiting reactions allowing larger reaction networks to be treated. |
---|