To address surface reaction network complexity using scaling relations machine learning and DFT calculations

Finding catalyst mechanisms remains a challenge due to the complexity of hydrocarbon chemistry. Here, the authors shows that scaling relations and machine-learning methods can focus full-accuracy methods on the small subset of rate-limiting reactions allowing larger reaction networks to be treated.

Guardado en:
Detalles Bibliográficos
Autores principales: Zachary W. Ulissi, Andrew J. Medford, Thomas Bligaard, Jens K. Nørskov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/f70daa3691ba4e61869251a1b60cfe88
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f70daa3691ba4e61869251a1b60cfe88
record_format dspace
spelling oai:doaj.org-article:f70daa3691ba4e61869251a1b60cfe882021-12-02T15:38:53ZTo address surface reaction network complexity using scaling relations machine learning and DFT calculations10.1038/ncomms146212041-1723https://doaj.org/article/f70daa3691ba4e61869251a1b60cfe882017-03-01T00:00:00Zhttps://doi.org/10.1038/ncomms14621https://doaj.org/toc/2041-1723Finding catalyst mechanisms remains a challenge due to the complexity of hydrocarbon chemistry. Here, the authors shows that scaling relations and machine-learning methods can focus full-accuracy methods on the small subset of rate-limiting reactions allowing larger reaction networks to be treated.Zachary W. UlissiAndrew J. MedfordThomas BligaardJens K. NørskovNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Zachary W. Ulissi
Andrew J. Medford
Thomas Bligaard
Jens K. Nørskov
To address surface reaction network complexity using scaling relations machine learning and DFT calculations
description Finding catalyst mechanisms remains a challenge due to the complexity of hydrocarbon chemistry. Here, the authors shows that scaling relations and machine-learning methods can focus full-accuracy methods on the small subset of rate-limiting reactions allowing larger reaction networks to be treated.
format article
author Zachary W. Ulissi
Andrew J. Medford
Thomas Bligaard
Jens K. Nørskov
author_facet Zachary W. Ulissi
Andrew J. Medford
Thomas Bligaard
Jens K. Nørskov
author_sort Zachary W. Ulissi
title To address surface reaction network complexity using scaling relations machine learning and DFT calculations
title_short To address surface reaction network complexity using scaling relations machine learning and DFT calculations
title_full To address surface reaction network complexity using scaling relations machine learning and DFT calculations
title_fullStr To address surface reaction network complexity using scaling relations machine learning and DFT calculations
title_full_unstemmed To address surface reaction network complexity using scaling relations machine learning and DFT calculations
title_sort to address surface reaction network complexity using scaling relations machine learning and dft calculations
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/f70daa3691ba4e61869251a1b60cfe88
work_keys_str_mv AT zacharywulissi toaddresssurfacereactionnetworkcomplexityusingscalingrelationsmachinelearninganddftcalculations
AT andrewjmedford toaddresssurfacereactionnetworkcomplexityusingscalingrelationsmachinelearninganddftcalculations
AT thomasbligaard toaddresssurfacereactionnetworkcomplexityusingscalingrelationsmachinelearninganddftcalculations
AT jensknørskov toaddresssurfacereactionnetworkcomplexityusingscalingrelationsmachinelearninganddftcalculations
_version_ 1718386087099891712