Integration of a Crop Growth Model and Deep Learning Methods to Improve Satellite-Based Yield Estimation of Winter Wheat in Henan Province, China
Timely and accurate regional crop-yield estimates are crucial for guiding agronomic practices and policies to improve food security. In this study, a crop-growth model was integrated with time series of remotely sensed data through deep learning (DL) methods to improve the accuracy of regional wheat...
Enregistré dans:
Auteurs principaux: | Yi Xie, Jianxi Huang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f72474d9738e4b80beff48f6cb603b10 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China
par: Ting Chen, et autres
Publié: (2021) -
Risk assessment of possible impacts of climate change and irrigation on wheat yield and quality with a modified CERES-Wheat model
par: Jianchao Liu, et autres
Publié: (2021) -
Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat
par: Mohammad Rokhafrouz, et autres
Publié: (2021) -
Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing
par: YANG Feifei, et autres
Publié: (2021) -
Response of Crops to Conservation Tillage and Nitrogen Fertilization under Different Agroecological Conditions
par: Irena Jug, et autres
Publié: (2021)