Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images
Abstract We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which u...
Guardado en:
Autores principales: | Shuai Jiang, George J. Zanazzi, Saeed Hassanpour |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f7a305b6c0774af5b9b9e09e00f7d2d9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
RUNX1 and REXO2 are associated with the heterogeneity and prognosis of IDH wild type lower grade glioma
por: Haiwei Wang, et al.
Publicado: (2021) -
Transcription Factor Signatures May Predict the Prognosis and Status of the Immune Microenvironment of Primary Lower-Grade Gliomas
por: Liu P, et al.
Publicado: (2021) -
Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas
por: Kun Fan, et al.
Publicado: (2017) -
Machine learning modeling of genome-wide copy number alteration signatures reliably predicts IDH mutational status in adult diffuse glioma
por: Nicholas Nuechterlein, et al.
Publicado: (2021) -
A Hypoxia-Related Long Non-Coding RNAs Signature Associated With Prognosis in Lower-Grade Glioma
por: Qinglin Feng, et al.
Publicado: (2021)