Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images
Abstract We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which u...
Enregistré dans:
Auteurs principaux: | Shuai Jiang, George J. Zanazzi, Saeed Hassanpour |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f7a305b6c0774af5b9b9e09e00f7d2d9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
RUNX1 and REXO2 are associated with the heterogeneity and prognosis of IDH wild type lower grade glioma
par: Haiwei Wang, et autres
Publié: (2021) -
Transcription Factor Signatures May Predict the Prognosis and Status of the Immune Microenvironment of Primary Lower-Grade Gliomas
par: Liu P, et autres
Publié: (2021) -
Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas
par: Kun Fan, et autres
Publié: (2017) -
Machine learning modeling of genome-wide copy number alteration signatures reliably predicts IDH mutational status in adult diffuse glioma
par: Nicholas Nuechterlein, et autres
Publié: (2021) -
A Hypoxia-Related Long Non-Coding RNAs Signature Associated With Prognosis in Lower-Grade Glioma
par: Qinglin Feng, et autres
Publié: (2021)