Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
We developed a gradient-based method to optimize the regularization hyper-parameter, C, for support vector machines in a bilevel optimization framework. On the upper level, we optimized the hyper-parameter C to minimize the prediction loss on validation data using stochastic gradient descent. On the...
Guardado en:
Autores principales: | W.e.i. Jiang, Sauleh Siddiqui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f82d7c90108a43cf8c8fd9386871b915 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time algorithms for the bilevel double-deck elevator dispatching problem
por: Janne Sorsa
Publicado: (2019) -
An efficient algorithm for the projection of a point on the intersection of two hyperplanes and a box in Rn
por: CláudioP. Santiago, et al.
Publicado: (2019) -
Special issue on: Computational discrete optimization
por: ArieM.C.A. Koster, et al.
Publicado: (2020) -
A robust basic cyclic scheduling problem
por: Idir Hamaz, et al.
Publicado: (2018) -
A MIP framework for non-convex uniform price day-ahead electricity auctions
por: Mehdi Madani, et al.
Publicado: (2017)