Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
We developed a gradient-based method to optimize the regularization hyper-parameter, C, for support vector machines in a bilevel optimization framework. On the upper level, we optimized the hyper-parameter C to minimize the prediction loss on validation data using stochastic gradient descent. On the...
Enregistré dans:
Auteurs principaux: | W.e.i. Jiang, Sauleh Siddiqui |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f82d7c90108a43cf8c8fd9386871b915 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Real-time algorithms for the bilevel double-deck elevator dispatching problem
par: Janne Sorsa
Publié: (2019) -
An efficient algorithm for the projection of a point on the intersection of two hyperplanes and a box in Rn
par: CláudioP. Santiago, et autres
Publié: (2019) -
Special issue on: Computational discrete optimization
par: ArieM.C.A. Koster, et autres
Publié: (2020) -
A robust basic cyclic scheduling problem
par: Idir Hamaz, et autres
Publié: (2018) -
A MIP framework for non-convex uniform price day-ahead electricity auctions
par: Mehdi Madani, et autres
Publié: (2017)