Oxidative damage-induced hyperactive ribosome biogenesis participates in tumorigenesis of offspring by cross-interacting with the Wnt and TGF-β1 pathways in IVF embryos

IVF: Mechanism and correction of increased cancer risk Increased production of ribosomes, the multi-molecular structures inside cells where protein synthesis occurs, is implicated in the enhanced risk of cancer in offspring conceived by in vitro fertilization (IVF), suggesting an approach to reduce...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Huang, Zhiling Li, En Lin, Pei He, Gaizhen Ru
Format: article
Language:EN
Published: Nature Publishing Group 2021
Subjects:
R
Online Access:https://doaj.org/article/f84694a74b4645d9954964ac38c1c111
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:IVF: Mechanism and correction of increased cancer risk Increased production of ribosomes, the multi-molecular structures inside cells where protein synthesis occurs, is implicated in the enhanced risk of cancer in offspring conceived by in vitro fertilization (IVF), suggesting an approach to reduce this risk. In studies on IVF mouse embryos, Zhiling Li and colleagues at First Affiliated Hospital of Shantou University Medical College in China found that harmful effects of natural oxidizing agents induced overproduction of specific protein components of ribosomes. This increased the embryos’ susceptibility to tumorigenesis through a particular molecular signaling pathway. Exposure to the natural antioxidant chemical epigallocatechin-3-gallate (EGCG) corrected the overproduction and protected the embryos. EGCG, found in green tea, is being widely investigated for its anticancer effects. Exposing embryos to EGCG during IVF might protect the resulting children from increased risk of tumor formation in later life.