Discrimination of Diabetic Retinopathy From Optical Coherence Tomography Angiography Images Using Machine Learning Methods
The goal was to discriminate between diabetic retinopathy (DR) and healthy controls (HC) by evaluating Optical coherence tomography angiography (OCTA) images from <inline-formula> <tex-math notation="LaTeX">$3\times 3$ </tex-math></inline-formula> mm scans with the...
Guardado en:
Autores principales: | Zhiping Liu, Chen Wang, Xiaodong Cai, Hong Jiang, Jianhua Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f84a093729d340cca6d0ff2bfd688b14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling Structure–Activity Relationship of AMPK Activation
por: Jürgen Drewe, et al.
Publicado: (2021) -
Application of machine learning to predict the outcome of pediatric traumatic brain injury
por: Thara Tunthanathip, et al.
Publicado: (2021) -
Effects of Capital Market Cycle on Behavior of Prediction Patterns of Financial Distress
por: Sasan Mehrani (Ph.D), et al.
Publicado: (2017) -
Monitoring and Forecasting of Urban Expansion Using Machine Learning-Based Techniques and Remotely Sensed Data: A Case Study of Gharbia Governorate, Egypt
por: Eman Mostafa, et al.
Publicado: (2021) -
Solar photovoltaic power prediction using different machine learning methods
por: Bouchaib Zazoum
Publicado: (2022)