Discrimination of Diabetic Retinopathy From Optical Coherence Tomography Angiography Images Using Machine Learning Methods
The goal was to discriminate between diabetic retinopathy (DR) and healthy controls (HC) by evaluating Optical coherence tomography angiography (OCTA) images from <inline-formula> <tex-math notation="LaTeX">$3\times 3$ </tex-math></inline-formula> mm scans with the...
Enregistré dans:
Auteurs principaux: | Zhiping Liu, Chen Wang, Xiaodong Cai, Hong Jiang, Jianhua Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f84a093729d340cca6d0ff2bfd688b14 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Modeling Structure–Activity Relationship of AMPK Activation
par: Jürgen Drewe, et autres
Publié: (2021) -
Application of machine learning to predict the outcome of pediatric traumatic brain injury
par: Thara Tunthanathip, et autres
Publié: (2021) -
Effects of Capital Market Cycle on Behavior of Prediction Patterns of Financial Distress
par: Sasan Mehrani (Ph.D), et autres
Publié: (2017) -
Monitoring and Forecasting of Urban Expansion Using Machine Learning-Based Techniques and Remotely Sensed Data: A Case Study of Gharbia Governorate, Egypt
par: Eman Mostafa, et autres
Publié: (2021) -
Solar photovoltaic power prediction using different machine learning methods
par: Bouchaib Zazoum
Publié: (2022)