Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection
Abstract Wine is a globally produced, marketed and consumed alcoholic beverage, which is valued for its aromatic and qualitative complexity and variation. These properties are partially attributable to the bacterial involvement in the fermentation process. However, the organizational principles and...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8f8d2e19006405380b3bfd11740d258 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f8f8d2e19006405380b3bfd11740d258 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f8f8d2e19006405380b3bfd11740d2582021-12-02T18:50:55ZBacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection10.1038/s41598-020-70535-82045-2322https://doaj.org/article/f8f8d2e19006405380b3bfd11740d2582020-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-70535-8https://doaj.org/toc/2045-2322Abstract Wine is a globally produced, marketed and consumed alcoholic beverage, which is valued for its aromatic and qualitative complexity and variation. These properties are partially attributable to the bacterial involvement in the fermentation process. However, the organizational principles and dynamic changes of the bacterial wine microbiota remain poorly understood, especially in the context of red and white wine variations and environmental stress factors. Here, we determined relative and absolute bacterial microbiota compositions from six distinct cultivars during the first week of fermentation by quantitative and qualitative 16S rRNA gene amplification and amplicon sequencing. All wines harboured complex and variable bacterial communities, with Tatumella as the most abundant genus across all batches, but red wines were characterized by higher bacterial diversity and increased relative and absolute abundance of lactic and acetic acid bacteria (LAB/AAB) and bacterial taxa of predicted environmental origin. Microbial diversity was positively correlated with plant-derived DNA concentrations in the wine and Botrytis cinerea infection before harvest. Our findings suggest that exogenous factors, such as procedural differences between red and white wine production and environmental stress on grape integrity, can increase bacterial diversity and specific bacterial taxa in wine, with potential consequences for wine quality and aroma.Alena M. BubeckLena PreissAnna JungElisabeth DörnerDaniel PodlesnyMarija KulisCynthia MaddoxCesar ArzeChristian ZörbNikolaus MerktW. Florian FrickeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Alena M. Bubeck Lena Preiss Anna Jung Elisabeth Dörner Daniel Podlesny Marija Kulis Cynthia Maddox Cesar Arze Christian Zörb Nikolaus Merkt W. Florian Fricke Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection |
description |
Abstract Wine is a globally produced, marketed and consumed alcoholic beverage, which is valued for its aromatic and qualitative complexity and variation. These properties are partially attributable to the bacterial involvement in the fermentation process. However, the organizational principles and dynamic changes of the bacterial wine microbiota remain poorly understood, especially in the context of red and white wine variations and environmental stress factors. Here, we determined relative and absolute bacterial microbiota compositions from six distinct cultivars during the first week of fermentation by quantitative and qualitative 16S rRNA gene amplification and amplicon sequencing. All wines harboured complex and variable bacterial communities, with Tatumella as the most abundant genus across all batches, but red wines were characterized by higher bacterial diversity and increased relative and absolute abundance of lactic and acetic acid bacteria (LAB/AAB) and bacterial taxa of predicted environmental origin. Microbial diversity was positively correlated with plant-derived DNA concentrations in the wine and Botrytis cinerea infection before harvest. Our findings suggest that exogenous factors, such as procedural differences between red and white wine production and environmental stress on grape integrity, can increase bacterial diversity and specific bacterial taxa in wine, with potential consequences for wine quality and aroma. |
format |
article |
author |
Alena M. Bubeck Lena Preiss Anna Jung Elisabeth Dörner Daniel Podlesny Marija Kulis Cynthia Maddox Cesar Arze Christian Zörb Nikolaus Merkt W. Florian Fricke |
author_facet |
Alena M. Bubeck Lena Preiss Anna Jung Elisabeth Dörner Daniel Podlesny Marija Kulis Cynthia Maddox Cesar Arze Christian Zörb Nikolaus Merkt W. Florian Fricke |
author_sort |
Alena M. Bubeck |
title |
Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection |
title_short |
Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection |
title_full |
Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection |
title_fullStr |
Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection |
title_full_unstemmed |
Bacterial microbiota diversity and composition in red and white wines correlate with plant-derived DNA contributions and botrytis infection |
title_sort |
bacterial microbiota diversity and composition in red and white wines correlate with plant-derived dna contributions and botrytis infection |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/f8f8d2e19006405380b3bfd11740d258 |
work_keys_str_mv |
AT alenambubeck bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT lenapreiss bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT annajung bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT elisabethdorner bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT danielpodlesny bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT marijakulis bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT cynthiamaddox bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT cesararze bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT christianzorb bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT nikolausmerkt bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection AT wflorianfricke bacterialmicrobiotadiversityandcompositioninredandwhitewinescorrelatewithplantderiveddnacontributionsandbotrytisinfection |
_version_ |
1718377481835118592 |