Adiabatic quantum linear regression
Abstract A major challenge in machine learning is the computational expense of training these models. Model training can be viewed as a form of optimization used to fit a machine learning model to a set of data, which can take up significant amount of time on classical computers. Adiabatic quantum c...
Guardado en:
Autores principales: | Prasanna Date, Thomas Potok |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fa971f1d82d749b1859b8a8944dc04ee |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Speeding up quantum perceptron via shortcuts to adiabaticity
por: Yue Ban, et al.
Publicado: (2021) -
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity
por: Lian-Ao Wu, et al.
Publicado: (2021) -
Quantum adiabatic cycles and their breakdown
por: Nicolò Defenu
Publicado: (2021) -
Creation of quantum entangled states of Rydberg atoms via chirped adiabatic passage
por: Elliot Pachniak, et al.
Publicado: (2021) -
Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain
por: Yadav P. Kandel, et al.
Publicado: (2021)