Adiabatic quantum linear regression
Abstract A major challenge in machine learning is the computational expense of training these models. Model training can be viewed as a form of optimization used to fit a machine learning model to a set of data, which can take up significant amount of time on classical computers. Adiabatic quantum c...
Enregistré dans:
Auteurs principaux: | Prasanna Date, Thomas Potok |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fa971f1d82d749b1859b8a8944dc04ee |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Speeding up quantum perceptron via shortcuts to adiabaticity
par: Yue Ban, et autres
Publié: (2021) -
Hamiltonian transformability, fast adiabatic dynamics and hidden adiabaticity
par: Lian-Ao Wu, et autres
Publié: (2021) -
Quantum adiabatic cycles and their breakdown
par: Nicolò Defenu
Publié: (2021) -
Creation of quantum entangled states of Rydberg atoms via chirped adiabatic passage
par: Elliot Pachniak, et autres
Publié: (2021) -
Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain
par: Yadav P. Kandel, et autres
Publié: (2021)