Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
Predicting a priori local defects in amorphous materials remains a grand challenge. Here authors combine a rotationally non-invariant structure representation with deep-learning to predict the propensity for shear transformations of amorphous solids for different loading orientations, only given the...
Enregistré dans:
| Auteurs principaux: | , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/fbaccc18a78f426ab79a24a83fc9e2fd |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!