On the Fekete–Szegö Problem for Meromorphic Functions Associated with <i>p</i>,<i>q</i>-Wright Type Hypergeometric Function

Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-q...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Adriana Cătaş
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Accès en ligne:https://doaj.org/article/fbf51a87ebb24690b7d85b6e362f1b8f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Making use of a post-quantum derivative operator, we define two classes of meromorphic analytic functions. For the considered family of functions, we aim to investigate the sharp bounds’ values in the case of the Fekete–Szegö problem. The study of the well-known Fekete–Szegö functional in the post-quantum calculus case for meromorphic functions provides new outcomes for research in the field. With the extended <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-operator, we establish certain inequalities’ relations concerning meromorphic functions. In the final part of the paper, a new <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></semantics></math></inline-formula>-analogue of the <i>q</i>-Wright type hypergeometric function is introduced. This function generalizes the classical and symmetrical Gauss hypergeometric function. All the obtained results are sharp.