Applying LCS/XCS to the RTS Games Domain
Real-Time Strategy games (RTS) are representatives of the highest class of computational complexity in computer game genres. To cope with the high complexity of the state-action space of RTS game worlds, various Machine Learning algorithms are being used and researched extensively. In this article,...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fc773c34b3884662a0a62469cd512946 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fc773c34b3884662a0a62469cd512946 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fc773c34b3884662a0a62469cd5129462021-11-07T00:38:44ZApplying LCS/XCS to the RTS Games Domain1330-36511848-6339https://doaj.org/article/fc773c34b3884662a0a62469cd5129462021-01-01T00:00:00Zhttps://hrcak.srce.hr/file/385035https://doaj.org/toc/1330-3651https://doaj.org/toc/1848-6339Real-Time Strategy games (RTS) are representatives of the highest class of computational complexity in computer game genres. To cope with the high complexity of the state-action space of RTS game worlds, various Machine Learning algorithms are being used and researched extensively. In this article, we apply eXtended Classifier Systems (XCS) to the domain of RTS games. The XCS algorithm belongs to a Learning Classifier Systems (LCS) group known for their adaptability, generalisation, and scalability. We build the game agent named AIXCS. It uses a group of XCS algorithms, which generate a set of unit-actions used in the RTS game. The AIXCS operates without prior learning from the game runs and in tight timing constraints. The AIXCS was put to the test against other game agents in the micro RTS game environment, with positive results regarding successful game operation at runtime.Damijan Novak*Domen VerberFaculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek articleAIgame agentLCSmicro RTSreal-time strategy gamesXCSEngineering (General). Civil engineering (General)TA1-2040ENTehnički Vjesnik, Vol 28, Iss 6, Pp 2127-2137 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
AI game agent LCS micro RTS real-time strategy games XCS Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
AI game agent LCS micro RTS real-time strategy games XCS Engineering (General). Civil engineering (General) TA1-2040 Damijan Novak* Domen Verber Applying LCS/XCS to the RTS Games Domain |
description |
Real-Time Strategy games (RTS) are representatives of the highest class of computational complexity in computer game genres. To cope with the high complexity of the state-action space of RTS game worlds, various Machine Learning algorithms are being used and researched extensively. In this article, we apply eXtended Classifier Systems (XCS) to the domain of RTS games. The XCS algorithm belongs to a Learning Classifier Systems (LCS) group known for their adaptability, generalisation, and scalability. We build the game agent named AIXCS. It uses a group of XCS algorithms, which generate a set of unit-actions used in the RTS game. The AIXCS operates without prior learning from the game runs and in tight timing constraints. The AIXCS was put to the test against other game agents in the micro RTS game environment, with positive results regarding successful game operation at runtime. |
format |
article |
author |
Damijan Novak* Domen Verber |
author_facet |
Damijan Novak* Domen Verber |
author_sort |
Damijan Novak* |
title |
Applying LCS/XCS to the RTS Games Domain |
title_short |
Applying LCS/XCS to the RTS Games Domain |
title_full |
Applying LCS/XCS to the RTS Games Domain |
title_fullStr |
Applying LCS/XCS to the RTS Games Domain |
title_full_unstemmed |
Applying LCS/XCS to the RTS Games Domain |
title_sort |
applying lcs/xcs to the rts games domain |
publisher |
Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek |
publishDate |
2021 |
url |
https://doaj.org/article/fc773c34b3884662a0a62469cd512946 |
work_keys_str_mv |
AT damijannovak applyinglcsxcstothertsgamesdomain AT domenverber applyinglcsxcstothertsgamesdomain |
_version_ |
1718443649211039744 |