Elucidating the constitutive relationship of calcium–silicate–hydrate gel using high throughput reactive molecular simulations and machine learning

Abstract Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Gideon A. Lyngdoh, Hewenxuan Li, Mohd Zaki, N. M. Anoop Krishnan, Sumanta Das
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/fd3045a55ad34dad90972c487c16a063
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!