Elucidating the constitutive relationship of calcium–silicate–hydrate gel using high throughput reactive molecular simulations and machine learning

Abstract Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gideon A. Lyngdoh, Hewenxuan Li, Mohd Zaki, N. M. Anoop Krishnan, Sumanta Das
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/fd3045a55ad34dad90972c487c16a063
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!