Elucidating the constitutive relationship of calcium–silicate–hydrate gel using high throughput reactive molecular simulations and machine learning
Abstract Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate...
Guardado en:
Autores principales: | Gideon A. Lyngdoh, Hewenxuan Li, Mohd Zaki, N. M. Anoop Krishnan, Sumanta Das |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fd3045a55ad34dad90972c487c16a063 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nanoscale origins of creep in calcium silicate hydrates
por: A. Morshedifard, et al.
Publicado: (2018) -
Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates
por: Elizaveta Pustovgar, et al.
Publicado: (2016) -
Controlled growth and ordering of poorly-crystalline calcium-silicate-hydrate nanosheets
por: Felipe Basquiroto de Souza, et al.
Publicado: (2021) -
Synthesis of Nanoscale Calcium Silicate Hydrate for Strength Enhancement of Cement Paste
por: Ming Wang, et al.
Publicado: (2021) -
Evaluation of the nanostructure of calcium silicate hydrate based on atomic force microscopy-infrared spectroscopy experiments
por: Zhu Zheyu, et al.
Publicado: (2021)