A Hodge-type decomposition of holomorphic Poisson cohomology on nilmanifolds
A cohomology theory associated to a holomorphic Poisson structure is the hypercohomology of a bicomplex where one of the two operators is the classical მ̄-operator, while the other operator is the adjoint action of the Poisson bivector with respect to the Schouten-Nijenhuis bracket. The first page o...
Enregistré dans:
Auteurs principaux: | Poon Yat Sun, Simanyi John |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fd70e3e315f543cebff44d90f4a8db35 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Abelian Complex Structures and Generalizations
par: Poon Yat Sun
Publié: (2021) -
Some relations between Hodge numbers and invariant complex structures on compact nilmanifolds
par: Yamada Takumi
Publié: (2017) -
Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms
par: Angella Daniele, et autres
Publié: (2020) -
Algebraic Structure of Holomorphic Poisson Cohomology on Nilmanifolds
par: Poon Yat Sun, et autres
Publié: (2019) -
Pseudo-holomorphic curves: A very quick overview
par: Oliveira Gonçalo
Publié: (2020)