Survival prognostic factors in patients with acute myeloid leukemia using machine learning techniques.
This paper identifies prognosis factors for survival in patients with acute myeloid leukemia (AML) using machine learning techniques. We have integrated machine learning with feature selection methods and have compared their performances to identify the most suitable factors in assessing the surviva...
Enregistré dans:
Auteurs principaux: | Keyvan Karami, Mahboubeh Akbari, Mohammad-Taher Moradi, Bijan Soleymani, Hossein Fallahi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/fd77825e3e4741b6aa5d9b0b2418aa8a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
SCAMP2/5 as diagnostic and prognostic markers for acute myeloid leukemia
par: Can Yue, et autres
Publié: (2021) -
Role of new Immunophenotypic Markers on Prognostic and Overall Survival of Acute Myeloid Leukemia: a Systematic Review and Meta-Analysis
par: A. F. O. Costa, et autres
Publié: (2017) -
Development of a poor-prognostic-mutations derived immune prognostic model for acute myeloid leukemia
par: Feng-Ting Dao, et autres
Publié: (2021) -
Conventional Cytogenetic and Molecular Analysis in Acute Myeloid Leukemia (AML) and Their Association with Overall Survival
par: Shakeri S., et autres
Publié: (2021) -
Circular RNAs in acute myeloid leukemia
par: Vijendra Singh, et autres
Publié: (2021)