STT-BSNN: An In-Memory Deep Binary Spiking Neural Network Based on STT-MRAM
This paper proposes an in-memory binary spiking neural network (BSNN) based on spin-transfer-torque magnetoresistive RAM (STT-MRAM). We propose residual BSNN learning using a surrogate gradient that shortens the time steps in the BSNN while maintaining sufficient accuracy. At the circuit level, pres...
Guardado en:
Autores principales: | Van-Tinh Nguyen, Quang-Kien Trinh, Renyuan Zhang, Yasuhiko Nakashima |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fdc82db0a0f44b1380ee2886de2abf87 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Utilization of Unsigned Inputs for NAND Flash-Based Parallel and High-Density Synaptic Architecture in Binary Neural Networks
por: Sung-Tae Lee, et al.
Publicado: (2021) -
Theoretical Study of Field-Free Switching in PMA-MTJ Using Combined Injection of STT and SOT Currents
por: Shaik Wasef, et al.
Publicado: (2021) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Fangxin Liu, et al.
Publicado: (2021) -
Computing In-Memory Design Based on Double Word Line and Double Threshold 4T SRAM
por: LIN Zhiting, NIU Jianchao+, WU Xiulong, PENG Chunyu
Publicado: (2021) -
Nonspecific ST-Segment and T-Wave (NS-STT) on Electrocardiogram is Associated with Increasing the Incidence of Perioperative Deep Vein Thrombosis in Patients with Lower Extremity Fracture Under 75 Years Old
por: Ren C, et al.
Publicado: (2021)