Underwater Leidenfrost nanochemistry for creation of size-tailored zinc peroxide cancer nanotherapeutics
Water can function as a sustainable reactor for the synthesis of size-controlled, functional nanoparticles. Here, the authors introduce an underwater Leidenfrost synthesis that reproduces the dynamic chemistry of the deep ocean, in which anticancer therapeutic ZnO2nanoclusters form in an overheated...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2017
|
Subjects: | |
Online Access: | https://doaj.org/article/fe020df06a0343b0bde5b6a479c8304c |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water can function as a sustainable reactor for the synthesis of size-controlled, functional nanoparticles. Here, the authors introduce an underwater Leidenfrost synthesis that reproduces the dynamic chemistry of the deep ocean, in which anticancer therapeutic ZnO2nanoclusters form in an overheated zone and migrate to colder water to continue growth. |
---|