Mitigation of Radiation-Induced Fiber Bragg Grating (FBG) Sensor Drifts in Intense Radiation Environments Based on Long-Short-Term Memory (LSTM) Network

This paper reports in-pile testing results of radiation-resistant fiber Bragg grating (FBG) sensors at high temperatures, intense neutron irradiation environments, and machine learning methods for radiation-induced sensor drift mitigation and reactor anomaly identification. The in-pile testing of fi...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Zekun Wu, Mohamed A. S. Zaghloul, David Carpenter, Ming-Jun Li, Joshua Daw, Zhi-Hong Mao, Cyril Hnatovsky, Stephen J. Mihailov, Kevin P. Chen
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/fe81c990b71644148471a8a200e43511
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!