Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations

ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jose Zaragoza, Zachary Bendiks, Charlotte Tyler, Mary E. Kable, Thomas R. Williams, Yelizaveta Luchkovska, Elaine Chow, Kyria Boundy-Mills, Maria L. Marco
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/fed5943480f64729af2a109f01b1f25f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:fed5943480f64729af2a109f01b1f25f
record_format dspace
spelling oai:doaj.org-article:fed5943480f64729af2a109f01b1f25f2021-11-15T15:22:03ZEffects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations10.1128/mSphere.00315-162379-5042https://doaj.org/article/fed5943480f64729af2a109f01b1f25f2017-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00315-16https://doaj.org/toc/2379-5042ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be improved by the deliberate addition of starter culture microbes that accelerate or beneficially modify product outcomes, the impact of either of those microbial additions on community dynamics within the fermentations is not well understood at strain-specific or global scales. Herein, we show how exogenous spoilage yeast or starter lactic acid bacteria confer very different effects on microbial numbers and diversity in olive fermentations. Introduced microbes have long-lasting consequences and result in changes that are apparent even when levels of those inoculants and their major enzymatic activities decline. This work has direct implications for understanding bacterial and fungal invasions of microbial habitats resulting in pivotal changes to community structure and function.Jose ZaragozaZachary BendiksCharlotte TylerMary E. KableThomas R. WilliamsYelizaveta LuchkovskaElaine ChowKyria Boundy-MillsMaria L. MarcoAmerican Society for MicrobiologyarticlefermentationLactobacillusmicrobiotaresilientSaccharomycesspoilageMicrobiologyQR1-502ENmSphere, Vol 2, Iss 1 (2017)
institution DOAJ
collection DOAJ
language EN
topic fermentation
Lactobacillus
microbiota
resilient
Saccharomyces
spoilage
Microbiology
QR1-502
spellingShingle fermentation
Lactobacillus
microbiota
resilient
Saccharomyces
spoilage
Microbiology
QR1-502
Jose Zaragoza
Zachary Bendiks
Charlotte Tyler
Mary E. Kable
Thomas R. Williams
Yelizaveta Luchkovska
Elaine Chow
Kyria Boundy-Mills
Maria L. Marco
Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
description ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be improved by the deliberate addition of starter culture microbes that accelerate or beneficially modify product outcomes, the impact of either of those microbial additions on community dynamics within the fermentations is not well understood at strain-specific or global scales. Herein, we show how exogenous spoilage yeast or starter lactic acid bacteria confer very different effects on microbial numbers and diversity in olive fermentations. Introduced microbes have long-lasting consequences and result in changes that are apparent even when levels of those inoculants and their major enzymatic activities decline. This work has direct implications for understanding bacterial and fungal invasions of microbial habitats resulting in pivotal changes to community structure and function.
format article
author Jose Zaragoza
Zachary Bendiks
Charlotte Tyler
Mary E. Kable
Thomas R. Williams
Yelizaveta Luchkovska
Elaine Chow
Kyria Boundy-Mills
Maria L. Marco
author_facet Jose Zaragoza
Zachary Bendiks
Charlotte Tyler
Mary E. Kable
Thomas R. Williams
Yelizaveta Luchkovska
Elaine Chow
Kyria Boundy-Mills
Maria L. Marco
author_sort Jose Zaragoza
title Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
title_short Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
title_full Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
title_fullStr Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
title_full_unstemmed Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
title_sort effects of exogenous yeast and bacteria on the microbial population dynamics and outcomes of olive fermentations
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/fed5943480f64729af2a109f01b1f25f
work_keys_str_mv AT josezaragoza effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT zacharybendiks effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT charlottetyler effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT maryekable effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT thomasrwilliams effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT yelizavetaluchkovska effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT elainechow effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT kyriaboundymills effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
AT marialmarco effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations
_version_ 1718428108682428416