Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations
ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/fed5943480f64729af2a109f01b1f25f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:fed5943480f64729af2a109f01b1f25f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:fed5943480f64729af2a109f01b1f25f2021-11-15T15:22:03ZEffects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations10.1128/mSphere.00315-162379-5042https://doaj.org/article/fed5943480f64729af2a109f01b1f25f2017-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00315-16https://doaj.org/toc/2379-5042ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be improved by the deliberate addition of starter culture microbes that accelerate or beneficially modify product outcomes, the impact of either of those microbial additions on community dynamics within the fermentations is not well understood at strain-specific or global scales. Herein, we show how exogenous spoilage yeast or starter lactic acid bacteria confer very different effects on microbial numbers and diversity in olive fermentations. Introduced microbes have long-lasting consequences and result in changes that are apparent even when levels of those inoculants and their major enzymatic activities decline. This work has direct implications for understanding bacterial and fungal invasions of microbial habitats resulting in pivotal changes to community structure and function.Jose ZaragozaZachary BendiksCharlotte TylerMary E. KableThomas R. WilliamsYelizaveta LuchkovskaElaine ChowKyria Boundy-MillsMaria L. MarcoAmerican Society for MicrobiologyarticlefermentationLactobacillusmicrobiotaresilientSaccharomycesspoilageMicrobiologyQR1-502ENmSphere, Vol 2, Iss 1 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fermentation Lactobacillus microbiota resilient Saccharomyces spoilage Microbiology QR1-502 |
spellingShingle |
fermentation Lactobacillus microbiota resilient Saccharomyces spoilage Microbiology QR1-502 Jose Zaragoza Zachary Bendiks Charlotte Tyler Mary E. Kable Thomas R. Williams Yelizaveta Luchkovska Elaine Chow Kyria Boundy-Mills Maria L. Marco Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations |
description |
ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be improved by the deliberate addition of starter culture microbes that accelerate or beneficially modify product outcomes, the impact of either of those microbial additions on community dynamics within the fermentations is not well understood at strain-specific or global scales. Herein, we show how exogenous spoilage yeast or starter lactic acid bacteria confer very different effects on microbial numbers and diversity in olive fermentations. Introduced microbes have long-lasting consequences and result in changes that are apparent even when levels of those inoculants and their major enzymatic activities decline. This work has direct implications for understanding bacterial and fungal invasions of microbial habitats resulting in pivotal changes to community structure and function. |
format |
article |
author |
Jose Zaragoza Zachary Bendiks Charlotte Tyler Mary E. Kable Thomas R. Williams Yelizaveta Luchkovska Elaine Chow Kyria Boundy-Mills Maria L. Marco |
author_facet |
Jose Zaragoza Zachary Bendiks Charlotte Tyler Mary E. Kable Thomas R. Williams Yelizaveta Luchkovska Elaine Chow Kyria Boundy-Mills Maria L. Marco |
author_sort |
Jose Zaragoza |
title |
Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations |
title_short |
Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations |
title_full |
Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations |
title_fullStr |
Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations |
title_full_unstemmed |
Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations |
title_sort |
effects of exogenous yeast and bacteria on the microbial population dynamics and outcomes of olive fermentations |
publisher |
American Society for Microbiology |
publishDate |
2017 |
url |
https://doaj.org/article/fed5943480f64729af2a109f01b1f25f |
work_keys_str_mv |
AT josezaragoza effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT zacharybendiks effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT charlottetyler effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT maryekable effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT thomasrwilliams effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT yelizavetaluchkovska effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT elainechow effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT kyriaboundymills effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations AT marialmarco effectsofexogenousyeastandbacteriaonthemicrobialpopulationdynamicsandoutcomesofolivefermentations |
_version_ |
1718428108682428416 |