A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography
Abstract As the prevalence of diabetes increases, millions of people need to be screened for diabetic retinopathy (DR). Remarkable advances in technology have made it possible to use artificial intelligence to screen DR from retinal images with high accuracy and reliability, resulting in reducing hu...
Enregistré dans:
Auteurs principaux: | Gahyung Ryu, Kyungmin Lee, Donggeun Park, Sang Hyun Park, Min Sagong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ff73611e942b4f6ba17d9ea59c8045d2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Optical Coherence Tomography Angiography Features of Neovascularization in Proliferative Diabetic Retinopathy
par: Vaz-Pereira S, et autres
Publié: (2020) -
Quantifying the pattern of retinal vascular orientation in diabetic retinopathy using optical coherence tomography angiography
par: Yanhui Ma, et autres
Publié: (2021) -
Correlations Between Optical Coherence Tomography Angiography Parameters and the Visual Acuity in Patients with Diabetic Retinopathy
par: Abdelshafy M, et autres
Publié: (2020) -
Association between smoking history and optical coherence tomography angiography findings in diabetic patients without diabetic retinopathy.
par: Dong-Wei Liu, et autres
Publié: (2021) -
Comparison of multicolor scanning laser ophthalmoscopy and optical coherence tomography angiography for detection of microaneurysms in diabetic retinopathy
par: Takato Sakono, et autres
Publié: (2021)