A Wavelet-Based Asymmetric Convolution Network for Single Image Super-Resolution
Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution(SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods tend to produce over-smoothed outputs and miss some textural details. To address these issues...
Enregistré dans:
| Auteurs principaux: | , , , , , , , , |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
IEEE
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/ffc04ca5aa0842d5bbeb8a176cd89c84 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|