A Wavelet-Based Asymmetric Convolution Network for Single Image Super-Resolution

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution(SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods tend to produce over-smoothed outputs and miss some textural details. To address these issues...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Wanxu Zhang, Kai Jiang, Lin Wang, Na Meng, Yan Zhou, Yanyan Li, Hailong Hu, Xiaoxuan Chen, Bo Jiang
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/ffc04ca5aa0842d5bbeb8a176cd89c84
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!