A Wavelet-Based Asymmetric Convolution Network for Single Image Super-Resolution

Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution(SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods tend to produce over-smoothed outputs and miss some textural details. To address these issues...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wanxu Zhang, Kai Jiang, Lin Wang, Na Meng, Yan Zhou, Yanyan Li, Hailong Hu, Xiaoxuan Chen, Bo Jiang
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/ffc04ca5aa0842d5bbeb8a176cd89c84
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares