A Wavelet-Based Asymmetric Convolution Network for Single Image Super-Resolution
Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution(SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods tend to produce over-smoothed outputs and miss some textural details. To address these issues...
Guardado en:
Autores principales: | Wanxu Zhang, Kai Jiang, Lin Wang, Na Meng, Yan Zhou, Yanyan Li, Hailong Hu, Xiaoxuan Chen, Bo Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ffc04ca5aa0842d5bbeb8a176cd89c84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution
por: Yue Yu, et al.
Publicado: (2021) -
Image Super-Resolution Algorithm Based on RRDB Model
por: Huan Li
Publicado: (2021) -
FPGA compression of ECG signals by using modified convolution scheme of the Discrete Wavelet Transform
por: Ballesteros,Dora M, et al.
Publicado: (2012) -
S2A: Scale-Attention-Aware Networks for Video Super-Resolution
por: Taian Guo, et al.
Publicado: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
por: Anusha Khan, et al.
Publicado: (2021)