The functional links between prion protein and copper
Prion diseases are fatal neurodegenerative disorders associated with the conversion of the cellular prion protein (PrPC) into a pathologic isoform. Although the physiological function of PrPC remains unknown, evidence relates PrPC to copper metabolism and oxidative stress as suggested by its copper-...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad de Biología de Chile
2006
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-97602006000100005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Prion diseases are fatal neurodegenerative disorders associated with the conversion of the cellular prion protein (PrPC) into a pathologic isoform. Although the physiological function of PrPC remains unknown, evidence relates PrPC to copper metabolism and oxidative stress as suggested by its copper-binding properties in the N-terminal octapeptide repeat region. This region also reduces copper ions in vitro, and this reduction ability is associated with the neuroprotection exerted by the octarepeat region against copper in vivo. In addition, the promoter region of the PrPC gene contains putative metal response elements suggesting it may be regulated by heavy metals. Here we address some of the evidence that support a physiological link between PrPC and copper. Also, in vivo experiments suggesting the physiological relevance of PrPC interaction with heparan sulfate proteoglycans are discussed. |
---|