Trans fatty acids and their role in the milk of dairy cows

E. Vargas-Bello-Pérez, and P.C. Garnsworthy. 2013. Trans fatty acids and their role in the milk of dairy cows. Cien. Inv. Agr. 40(3): 449-473. Lipids obtained from dairy products are an important part of the human diet in many countries. Approximately 75% of the total consumption of fat from ruminan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vargas-Bello-Pérez,Einar, Garnsworthy,Phil C
Lenguaje:English
Publicado: Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:E. Vargas-Bello-Pérez, and P.C. Garnsworthy. 2013. Trans fatty acids and their role in the milk of dairy cows. Cien. Inv. Agr. 40(3): 449-473. Lipids obtained from dairy products are an important part of the human diet in many countries. Approximately 75% of the total consumption of fat from ruminant animals comes from bovine milk fat. Trans fatty acids (tFA) are produced during biohydrogenation of mono- and poly-unsaturated FA in the rumen. They are mixtures of positional and geometrical isomers that are incorporated into the milk fat of lactating cows. The most important sources of tFA in the human diet are partially hydrogenated vegetable oils and ruminant milk and meat products. Ruminant-derived lipids often contain 1-8% of total fatty acids as tFA, which are predominantly 18:1 isomers. The most common FA in ruminant fat is vaccenic acid (18:1 trans-11) (VA), accounting for 60-80% of total tFA. Unlike other tFA, VA can be converted to rumenic acid (RA) through the action of stearoyl coenzyme-A desaturase. Today, consumers are becoming aware of the relationship between dietary fat, health maintenance, and disease prevention. These concerns have increased the need to investigate the metabolic fate and bioactivity of dietary FA. By altering the nutrition of cows, farmers can markedly and rapidly modulate the FA composition of milk FA. The largest changes can be obtained either by feeding animals high-quality forage, particularly fresh pasture, or by adding plant or marine oils to the diet. Given that economic factors define future profits for farmers, diet manipulation may be the most practical and appropriate approach to change milk's FA composition.