Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems
Declining fishing yields have pushed the search for sustainable alternative sources for polyunsaturated fatty acids (PUFAs). Thraustochytrids and marine yeasts (marine fungoid protists) are potential commercial sources of lipids and carotenoids. It was determined the capacity of a collection of 41 s...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de Valparaíso. Facultad de Ciencias del Mar
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-19572015000400009 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-19572015000400009 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-195720150004000092016-01-26Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystemsPino,Natalie LSocias,CristianGonzález,Rodrigo R Marine fungoid protist DHA EPA total carotenoids Rhodotorula kinetic parameters Declining fishing yields have pushed the search for sustainable alternative sources for polyunsaturated fatty acids (PUFAs). Thraustochytrids and marine yeasts (marine fungoid protists) are potential commercial sources of lipids and carotenoids. It was determined the capacity of a collection of 41 strains of marine fungoid isolated in the Humboldt Current System, to produce DHA (docosahexanoic acid), EPA (eicosapentanoic acid) and CT (total carotenoids) in commercial growing media (MS) and alternative growing mediums (PDB, GAM, BAM and MCM). The media MS and PDB exhibited the highest growth rate (0.02 h-1), at 16 and 37°C, respectively. Thirteen of the studied strains showed high capacity to produce DHA (up to 23% dry weight) and CT (up to 18% dry weight), comparable to levels observed in Schizochytrium sp. KH105 and Rhodosporidium toruloides. Additionally, all studied strains produce small amounts of EPA (up to 0.3% of dry weight). Scanning electron microscopy reveals that strain C36 is morphologically consistent with yeasts, while partial sequencing of the 18s ribosomal gene shows 97% similarity to the genus Rhodotorula, which has not been reported until now as a producer of DHA and EPA. Finally, the strains C36, C22 and C4 offer promising potential for upscaling their production for commercial use for enriching human food and animal and larval fish feed with omega-3 and carotenoids, as well as being a source for food dyes for salmon and other products.info:eu-repo/semantics/openAccessUniversidad de Valparaíso. Facultad de Ciencias del MarRevista de biología marina y oceanografía v.50 n.3 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-19572015000400009en10.4067/S0718-19572015000400009 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Marine fungoid protist DHA EPA total carotenoids Rhodotorula kinetic parameters |
spellingShingle |
Marine fungoid protist DHA EPA total carotenoids Rhodotorula kinetic parameters Pino,Natalie L Socias,Cristian González,Rodrigo R Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems |
description |
Declining fishing yields have pushed the search for sustainable alternative sources for polyunsaturated fatty acids (PUFAs). Thraustochytrids and marine yeasts (marine fungoid protists) are potential commercial sources of lipids and carotenoids. It was determined the capacity of a collection of 41 strains of marine fungoid isolated in the Humboldt Current System, to produce DHA (docosahexanoic acid), EPA (eicosapentanoic acid) and CT (total carotenoids) in commercial growing media (MS) and alternative growing mediums (PDB, GAM, BAM and MCM). The media MS and PDB exhibited the highest growth rate (0.02 h-1), at 16 and 37°C, respectively. Thirteen of the studied strains showed high capacity to produce DHA (up to 23% dry weight) and CT (up to 18% dry weight), comparable to levels observed in Schizochytrium sp. KH105 and Rhodosporidium toruloides. Additionally, all studied strains produce small amounts of EPA (up to 0.3% of dry weight). Scanning electron microscopy reveals that strain C36 is morphologically consistent with yeasts, while partial sequencing of the 18s ribosomal gene shows 97% similarity to the genus Rhodotorula, which has not been reported until now as a producer of DHA and EPA. Finally, the strains C36, C22 and C4 offer promising potential for upscaling their production for commercial use for enriching human food and animal and larval fish feed with omega-3 and carotenoids, as well as being a source for food dyes for salmon and other products. |
author |
Pino,Natalie L Socias,Cristian González,Rodrigo R |
author_facet |
Pino,Natalie L Socias,Cristian González,Rodrigo R |
author_sort |
Pino,Natalie L |
title |
Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems |
title_short |
Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems |
title_full |
Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems |
title_fullStr |
Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems |
title_full_unstemmed |
Marine fungoid producers of DHA, EPA and carotenoids from central and southern Chilean marine ecosystems |
title_sort |
marine fungoid producers of dha, epa and carotenoids from central and southern chilean marine ecosystems |
publisher |
Universidad de Valparaíso. Facultad de Ciencias del Mar |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-19572015000400009 |
work_keys_str_mv |
AT pinonataliel marinefungoidproducersofdhaepaandcarotenoidsfromcentralandsouthernchileanmarineecosystems AT sociascristian marinefungoidproducersofdhaepaandcarotenoidsfromcentralandsouthernchileanmarineecosystems AT gonzalezrodrigor marinefungoidproducersofdhaepaandcarotenoidsfromcentralandsouthernchileanmarineecosystems |
_version_ |
1714202351713124352 |