Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs

ABSTRACT Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External va...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yáñez,Eleuterio, Plaza,Francisco, Sánchez,Felipe, Silva,Claudio, Barbieri,María Ángela, Bohm,Gabriela
Lenguaje:English
Publicado: Pontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del Mar 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2017000400675
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-560X2017000400675
record_format dspace
spelling oai:scielo:S0718-560X20170004006752017-10-11Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNsYáñez,EleuterioPlaza,FranciscoSánchez,FelipeSilva,ClaudioBarbieri,María ÁngelaBohm,Gabriela forecast pelagic landings climate change artificial neural net works northern Chile ABSTRACT Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and −50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE is decreased.info:eu-repo/semantics/openAccessPontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del MarLatin american journal of aquatic research v.45 n.4 20172017-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2017000400675en10.3856/vol45-issue4-fulltext-4
institution Scielo Chile
collection Scielo Chile
language English
topic forecast
pelagic landings
climate change
artificial neural net works
northern Chile
spellingShingle forecast
pelagic landings
climate change
artificial neural net works
northern Chile
Yáñez,Eleuterio
Plaza,Francisco
Sánchez,Felipe
Silva,Claudio
Barbieri,María Ángela
Bohm,Gabriela
Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
description ABSTRACT Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and −50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE is decreased.
author Yáñez,Eleuterio
Plaza,Francisco
Sánchez,Felipe
Silva,Claudio
Barbieri,María Ángela
Bohm,Gabriela
author_facet Yáñez,Eleuterio
Plaza,Francisco
Sánchez,Felipe
Silva,Claudio
Barbieri,María Ángela
Bohm,Gabriela
author_sort Yáñez,Eleuterio
title Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
title_short Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
title_full Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
title_fullStr Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
title_full_unstemmed Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
title_sort modelling climate change impacts on anchovy and sardine landings in northern chile using anns
publisher Pontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del Mar
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2017000400675
work_keys_str_mv AT yanezeleuterio modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns
AT plazafrancisco modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns
AT sanchezfelipe modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns
AT silvaclaudio modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns
AT barbierimariaangela modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns
AT bohmgabriela modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns
_version_ 1714205185215037440