Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs
ABSTRACT Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External va...
Guardado en:
Autores principales: | , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Pontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del Mar
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2017000400675 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-560X2017000400675 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-560X20170004006752017-10-11Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNsYáñez,EleuterioPlaza,FranciscoSánchez,FelipeSilva,ClaudioBarbieri,María ÁngelaBohm,Gabriela forecast pelagic landings climate change artificial neural net works northern Chile ABSTRACT Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and −50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE is decreased.info:eu-repo/semantics/openAccessPontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del MarLatin american journal of aquatic research v.45 n.4 20172017-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2017000400675en10.3856/vol45-issue4-fulltext-4 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
forecast pelagic landings climate change artificial neural net works northern Chile |
spellingShingle |
forecast pelagic landings climate change artificial neural net works northern Chile Yáñez,Eleuterio Plaza,Francisco Sánchez,Felipe Silva,Claudio Barbieri,María Ángela Bohm,Gabriela Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs |
description |
ABSTRACT Artificial Neural Networks (ANN) are adjusted to predict monthly landings of anchovy (Engraulis ringens) and sardine (Sardinops sagax) in northern Chile (18°21'-24°00'S). Fishing effort (FE), landings and twelve environmental variables are considered from 1980 to 2012. External validation for the best models using all variables showed an R2 of 95% for anchovy and 99% for sardine, with an efficiency of 0.94 and 0.96, respectively. The models were simplified by considering only FE and sea surface temperature (SST) from NOAA satellites (SST-NOAA). Using these variables, very similar fits were achieved, comparing with the previous models, maintaining their predictive capacity. Downscaled SST for A2 climate change scenario (2015-2065) obtained by statistical regionalization from the Community Climate System Model (CCSM3) from National Center for Atmospheric Research (NCAR) and three FE scenarios (2010-2012 average, + 50% and −50%), were used as inputs for ANN simplified models. For A2 future climate change scenario (2015-2065) using 2010-2012 average FE as inputs, anchovy and sardine landings would increase 2.8% and 19.2% by 2065 respectively. With FE variations (-50%), sardine landings show the highest increase (22.6%) by 2065 when FE is decreased. |
author |
Yáñez,Eleuterio Plaza,Francisco Sánchez,Felipe Silva,Claudio Barbieri,María Ángela Bohm,Gabriela |
author_facet |
Yáñez,Eleuterio Plaza,Francisco Sánchez,Felipe Silva,Claudio Barbieri,María Ángela Bohm,Gabriela |
author_sort |
Yáñez,Eleuterio |
title |
Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs |
title_short |
Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs |
title_full |
Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs |
title_fullStr |
Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs |
title_full_unstemmed |
Modelling climate change impacts on anchovy and sardine landings in northern Chile using ANNs |
title_sort |
modelling climate change impacts on anchovy and sardine landings in northern chile using anns |
publisher |
Pontificia Universidad Católica de Valparaíso. Facultad de Recursos Naturales. Escuela de Ciencias del Mar |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2017000400675 |
work_keys_str_mv |
AT yanezeleuterio modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns AT plazafrancisco modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns AT sanchezfelipe modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns AT silvaclaudio modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns AT barbierimariaangela modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns AT bohmgabriela modellingclimatechangeimpactsonanchovyandsardinelandingsinnorthernchileusinganns |
_version_ |
1714205185215037440 |