Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints

Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configuration...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolò Vallarano, Matteo Bruno, Emiliano Marchese, Giuseppe Trapani, Fabio Saracco, Giulio Cimini, Mario Zanon, Tiziano Squartini
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!