Fast and scalable likelihood maximization for Exponential Random Graph Models with local constraints
Abstract Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configuration...
Guardado en:
Autores principales: | Nicolò Vallarano, Matteo Bruno, Emiliano Marchese, Giuseppe Trapani, Fabio Saracco, Giulio Cimini, Mario Zanon, Tiziano Squartini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/00f9f8db37124723b7faa9a1b6954d4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Networked partisanship and framing: A socio-semantic network analysis of the Italian debate on migration.
por: Tommaso Radicioni, et al.
Publicado: (2021) -
Analysing Twitter semantic networks: the case of 2018 Italian elections
por: Tommaso Radicioni, et al.
Publicado: (2021) -
Fast-forwarding of Hamiltonians and exponentially precise measurements
por: Yosi Atia, et al.
Publicado: (2017) -
Multi GPU parallelization of maximum likelihood expectation maximization method for digital rock tomography data
por: Jaya Prakash, et al.
Publicado: (2021) -
Parallel power posterior analyses for fast computation of marginal likelihoods in phylogenetics
por: Sebastian Höhna, et al.
Publicado: (2021)